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We construct models for dispersal of a population which incorporate the response of
individuals to interfaces between habitat types. The models are based on random walks where
there may be a bias in the direction an individual moves when it encounters an interface. This
sort of dispersal process is called skew Brownian motion. Our models take the form of diffu-
sion equations with matching conditions across the interface between regions for population
densities and fluxes. We combine the dispersal models with linear population growth models
which assume that the population growth rate differs between regions of different habitat
types. We use those models to study issues of refuge design. We specifically consider how the
effectiveness of buffer zones depends on their size, quality, and the population’s response to

the interface between the buffer zone and the refuge.

1. INTRODUCTION

Populations inhabit landscapes, and landscapes
consist of mosaics of patches of different habitat types.
Often patches of habitat favorable to a given species are
surrounded by regions of less favorable habitat. The
fragmentation of landscapes is.increased by the effects of
human development. In some cases the fragmentation is
premeditated and the fragments are designated as nature
reserves, buffer zones, agricultural areas, suburbs, and so
forth. To understand how populations interact with
fragmented landscapes it is desirable to have spatially
explicit models that can account for environmental heter-
ogeneity and the behavior of individuals at patch boun-
daries; see, for example, the discussion in the survey
articles by Dunning et al. (1995) and Wiens et al. (1993).

! Order of authorship is alphabetical.

2 This research was partially supported by the NSF under Grant
DMS-9303708.
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One modeling approach which has proven quite useful in
studying spatial effects in homogeneous environments is
based on partial differential equations, especially reac-
tion—diffusion equations; see Okubo (1980), Kareiva
(1990) and Holmes et al. (1994). The goals of the present
article are o show how the behavior of individuals at
patch boundaries can be incorporated into reaction—
diffusion models and to use the resulting models to study
some questions about the design for nature reserves.
There have been a number of empirical studies which
indicate that the dispersal behavior of individuals is
influenced by boundaries between different types of
habitat and that the details of behavior at a boundary
often depend on what is on the other side. Some of those
studies are Goszczynski (1979a, b), Wegner and Merriam
(1979), Yahner (1983), Bach (1984), and Kareiva (1985).
We incorporate behavior at a patch boundary into diffu-
sion models by using what is known as skew Brownian
motion (Walsh, 1978; Harrison and Shepp, 1981). Skew
Brownian motion assumes that individuals move according
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to ordinary diffusion (so that movement in any direction
is equally likely) unless they encounter a boundary, but
at a boundary the probability that an individual will
move into the region on one side of the boundary may be
different than the probability it will move into the region
on the other side. If the probability of crossing the
boundary in either direction is 1, then the boundary is
invisible to the population and the model for dispersal
reduces to ordinary diffusion. If the probability of cross-
ing the boundary in one direction is zero, the boundary
acts as a perfectly reflecting barrier. If the probability of
moving from the boundary into the region on one side is
different from the probability of moving into the region
on the other side then individuals display a preference
for dispersing into one region rather than the other. We
consider only the simplest case of a one-dimensional
environment, but the essential ideas would make sense in
more general settings.

Since our goal is to study the effects of spatial hetero-
geneity and behavior at interfaces between regions of
different habitat types on the dynamics of populations we
must make some hypotheses about the rate at which the
population grows or declines. We assume that the popu-
lation grows or declines at a fixed rate on each type of
habitat but that the rates differ between different types of
habitat. In other words, we use density-independent
models for population growth, so we are lead to projec-
tions of either exponential growth or exponential decay
for the population. We could consider density-dependent
models, e.g., logistic models, but the predictions of such
models about persistence or extinction are often deter-
mined by the predictions of associated linear models; see,
for example, Cantrell and Cosner (1989, 1991a, b, 1993).
In particular the ability of a population to increase its
numbers when introduced at low densities, which can
often be determined from models without density depen-
dence, typically implies some form of persistence or
coexistence in the corresponding density-dependent
model. This principle is sometimes stated as “invasibility
implies persistence.” It is asserted informally in Pacala
and Roughgarden (1982) and mathematically rigorous
formulations of the principle are given in Cantrell and
Cosner (1989, 1991a, b, 1993) and Cantrell ef al. (1993,
1996). Thus, although simple models without density
dependence are limited in their range of applicability,
they can provide criteria for the behavior of more complex
density-dependent models. Furthermore, models without
density dependence can be reasonably accurate descrip-
tions of populations at low densities, and in conservation
and refuge design such populations are a common focus
of interest. We study the effects of spatial heterogeneity
and behavior at patch boundaries on population dynamics
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by observing how the average population growth rate in
an environment varies when parameters describing patch
size and dispersal behavior are varied. The average popu-
lation growth rate is computed as the principal eigen-
value of a type of differential operator. It is analogous to
the principal eigenvalue of a Leslie matrix model for an
age-structured population. The analysis is similar to that
used in Cantrell and Cosner (1991a), where some of the
effects of spatial heterogeneity are considered but the
issue of behavior at patch boundaries is not addressed.

The spatial structure upon which we focus our atten-
tion consists of a favorable region surrounded by a less
favorable region which is in turn surrounded by an
immediately lethal boundary. This arrangement is a
caricature of a nature reserve surrounded by a buffer
zone which is in turn surrounded by developed or
cultivated regions. We assume that the arrangement is
one dimensional and symmetric. Our analysis then
examines how the overall population growth rate
depends on the size of the refuge and buffer zone, the
quality of habitat in the two regions, and the behavior of
the population at the interface or boundary between
them. We also consider one case where some of these
factors are related, namely where the tendency of the
population to remain in the refuge increases as the
habitat quality in the buffer zone decreases. The question
of how buffer zones affect the population which the
refuge is designed to preserve is suggested by the work of
Janzen (1983, 1986). One of Janzen’s suggestions was
that buffer zones may sometimes be most useful when the
population in the refuge has as little interaction as
possible with the buffer zone, even if the trade-off is that
the habitat quality in the buffer zone must be decreased
in order to reduce the level of interaction. Our models
support Janzen’s suggestion in some cases. We drew
similar conclusions in Cantrell and Cosner (1993) but in
the context of competition between species without any
habitat preference for dispersal. The mechanism produc-
ing the effect there was a shift in competitive advantage.
The mechanism producing the effect in the scenarios
considered here is habitat preference.

There are many additional topics which could be
treated using diffusion models incorporating habitat
preference into behavior at patch boundaries. Many of
those have already been addressed in the framework of
diffusion models with spatial heterogeneity but no
habitat preference. These include the effects of the shape
and arrangement of favorable and unfavorable regions
(Cantrell and Cosner, 1989, 1991a, b); density dependence
in single-species models (Ludwig, et al., 1979; Cantrell
and Cosner, 1989, 1991b; Freedman and Krisztin, 1992;
Freedman and Wu, 1992); competition (Pacala and
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Roughgarden, 1982; Cantrell and Cosner, 1993);
predator-prey interactions (Benson er al, 1993); and
propagation of waves of invasion (Shigesada et al., 1986).
There are also a number of different modeling approaches
that could be used. Those include computer simulations
as in Stamps et al. (1987a, b) and Abramsky and Van
Dyne (1980) and analytic models based on patch
dynamics, cellular automata, or various other ideas. For
discussions of modeling approaches and other topics
related to environmental heterogeneity, habitat fragmen-
tation, and dispersal with habitat preferences and
realistic behavior at patch boundaries see the reviews by
Dunning et al. (1995) and Wiens et al. (1993).

This paper is organized as follows: the construction of
the models is discussed in Section 2; the methods of
analysis and some simple conclusions about parameter
dependence are discussed in Section 3; the effects of
changing the size and quality of the buffer zone and the
size of the refuge are discussed in Section 4; and the
effects of behavioral sensitivity to differences in habitat
quality across patch boundaries are discussed in Section 5.
Section 6 describes our conclusions in relatively non-
mathematical terms. Some of the detailed calculations and
more complicated formulas are shown in the Appendix.

2. CONSTRUCTION OF DIFFUSION
MODELS INCORPORATING EDGE
PERMEABILITY

Formulation of the General Model

Diffusion models represent one of the standard
approaches to modeling population dynamics with disper-
sal in spatially continuous environments. Such models
were introduced to population biology by Skellam
(1951) and Kierstead and Slobodkin (1953). They are
discussed in detail in Okubo (1980), and reviews of the
recent literature on diffusion models are given in Kareiva
(1990) and Holmes et al. (1994). Our goal is to construct
a diffusion model describing the density of population
inhabiting an environment consisting of a region or
patch of favorable habitat which is separated from a
region of less favorable habitat by a more or less per-
meable edge. To justify the model formulation, however,
we will need to briefly review the derivation of the
standard diffusion model for dispersal in a spatially
uniform environment. For more details see Okubo
(1980) or Taira (1988).

Simple diffusion or Brownian motion is based on the
assumption that individuals move via unbiased random
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walks with a specified average distance traveled per unit
time. Skew Brownian motion is a diffusion process which
is the same as ordinary one-dimensional Brownian motion
except at a distinguished point, where the probability of
an individual moving to the left is different than the
probability of moving to the right. We shall denote the
probability of moving to the right at the distinguished
point by «, so that the probability of moving to the left is
1—oa.

A crucial property of Brownian motion (i.e., standard
diffusion) which is shared by much more general diffu-
sion processes is the semi-group property; see Taira
(1988). To explain this property, let (7,uy)(x) represent
the expected population density at time # given an initial
population density uy(x) of individuals dispersing under
a diffusion process. The semi-group property can be
stated as the fact that for s, £ > 0 we have

(T4 s1t0)(x) = (T (T 240))(x)- (2.1)

In other words, the population density which is expected
to develop from the initial density uy(x) after time ¢+
would also be attained if the process ran for time ¢, was
re-initialized using the expected density at time ¢, and
then ran for time s. Two key mathematical features of
the semi-group {7T,:¢>0} corresponding to Brownian
motion or a more general diffusion process are that
Toug(x) = up(x) and that the semi-group has an infinite-
simal generator defined by

(2.2)

(du)(x) =lim (Truoxxt) —ug(x)

In the case of standard diffusion, we obtain 4 = Dd?%/0x>.

The connection between 4 and T, is that if u(x, )=
(T,uo)(x) then

Ju
Fri Au for >0 (2.3)

u(x, 0) = ug(x).

Thus, for the standard process of dispersal by simple
diffusion we obtain the diffusion equation

du D*u
-a-t=—.6? for —o<x<o, t>0, (24)
with the initial density specified by u(x, 0) = uy(x). (For
a detailed discussion of the ideas described above see
Taira (1988). A more comprehensive but less accessible
treatment is given in Ito and McKean (1965).) To justify
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the connection between Eq. (2.3) and the process defined
by T, which it should describe, the class of densities w(x)
to which A is applied must be restricted. That some sort
of restriction is required is clear from the example (2.4) of
standard diffusion, since D&*w/0x? does not make sense
for arbitrary w(x). The class of densities to which 4 can
be applied is called the domain of 4. Beyond the obvious
requirement that 4u must make sense there is a more
subtle restriction which will be crucial in our construc-
tion of models for dispersal in habitat patches with more
or less permeable edges. If the dispersal process does not
allow individuals to become stuck at any fixed location
and does not allow any impenetrable barriers to disper-
sal, then the domain of the infinitesimal generator A of
the semi-group {7T,: >0} must be restricted to func-
tions w(x) for which (Aw)(x) is continuous. (A rigorous
but almost impenetrable mathematical treatment of this
point is given in Ito and McKean (1965, pp. 83-100).) In
the case of standard diffusion with no population growth
or decline this restriction means simply that we must
consider only population densities with continuous
second derivatives in the space variable. In the case we
seek to model, however, this restriction will lead to a
crucial matching condition across the interface at the
patch boundary.

There are a number of possible constructions which
lead to equivalent forms of skew Brownian motion; see
Ito and McKean (1965, Problem 1, Sect.4.2), Walsh
(1978), and Harrison and Shepp (1981). We shall adapt
the treatment given in Walsh (1978), which yields a
version of (2.3) analogous to the form (2.4) correspond-
ing to ordinary diffusion. For the parameter values used
by Walsh (1978) we find that the semi-group generator 4
is defined by

(du)(x) = - %

> 32 for x#0 (2.5)

with the domain of A4 specified so that (Aw)(x) is
continuous at x =0 for wedom 4, ie,

%w . .
52 B continuous for x#0;
0w 0%w
g (0H) =52 (07) 26

together with the matching condition

a%(0+)=(1—a)-g—:(0—). (2.7)
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Recall that « represents the probability of an individual
moving to the right at x =0; in general a # 1.

Condition (2.7) describes the behavior of the process
at the interface x=0. Condition (2.6) is simply the
requirement that the domain of the infinitesimal gener-
ator A should consist of functions w(x) for which
(Aw)(x) is continuous. If we were satisfied to consider
only situations with no growth or decline in total popula-
tion and the same diffusion rate on either side of the
interface we could simply use the matching conditions
given in (2.6) and (2.7). However, we want to allow for
population growth and differing diffusion rates, and we
also want to restrict our spatial region to a finite interval.

For our present purposes we are satisfied to assume
that on each side of the interface at x =0 we have disper-
sal via standard diffusion combined with linear growth.
The infinitesimal generator for such a process is
D?/9x* +r; so we will want a generator A4 of the form

0w

D, ’ax—z -+ sw, x<0
(Aw)(x) = o (2.8)
Dy z5+rw, x>0

9 v

The condition that &*w/0x? be continuous for x 0 is
unchanged; the matching condition in Eq. (2.6) becomes

2,

i 0
<Dza—)::+ rw) 0+)= <D1 ggHW) 0-) 29

ie, lim,_ o, [D,0*w/ow?/rw]=lim,_, o_[D,0*w/0x*
+swl.
The appropriate modification of (2.7) is

9 9
aDzEZ—(0+)=(I—a)D15:—(O~). (2.10)

The reason for the modification of (2.7) into (2.10) can be
understood by noting that if « =1 then the point x =0
behaves in exactly the same way as any other point, so
that unbiased diffusion across x=0 should lead to
continuity of flux. This is exactly the content of (2.10)
when o =1; see Okubo (1980) or Ludwig et al. (1979).
The possible discontinuity of flux across x =0 in (2.10) or
even (2.7) seems paradoxical, but it can be resolved by
the observation in Walsh (1978) that the so-called “local
time” of the process with o # 1 is discontinuous across the
point x =0 even in the case with no population growth
and the same diffusion rate for x>0 and x < 0. (“Local
time” is not a time scale in the usual sense; it describes the
average time an individual remains in the vicinity of a
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point.) In general (2.9) does not imply continuity of the
density itself across x =0; however, for processes where
the population density has a fixed spatial profile and is
growing, declining, or at equilibrium in time the condi-
tion (2.9) is compatible with continuity of density across
x =0, Thus, in the case where there is no preferred direc-
tion across the interface and where the system is at equi-
librium the matching conditions (2.9) and (2.10) are
consistent with those imposed, for example, in Ludwig et
al. (1979), namely that the density and flux of the popula-
tion be continuous across the interface.

To complete the formulation of our model we restrict
the overall spatial domain and impose an absorbing
boundary condition (i.e., a condition which implies that
any individual that reaches the boundary is permanently
removed) at the edge of the overall environment. The
situation we have in mind is that of a refuge surrounded
by a buffer zone, with the buffer zone surrounded by
regions of completely hostile habitat. We could treat
situations where the boundary condition at the outside
boundary of the overall spatial domain is taken to be
reflecting rather than absorbing, or where some fraction
of individuals reaching the boundary are reflected and
the remainder are absorbed. Our general methods would
still apply, but the detailed predictions of the model
would probably change. This issue is discussed in the
context of ordinary Brownian motion in a heterogeneous
environment in Cantrell and Cosner (1991a). To describe
that situation we assume that the overall habitat consists
of an interval ( —/, 0) of less favorable habitat with diffu-
sion rate D, and growth (or decay) rate s, an interval
(0, 2L) of more favorable habitat with diffusion rate D,
and growth rate r, and another interval (2L, 2L +1) of
less favorable habitat. The region outside (—/, 2L + ) is
assumed to be completely hostile. Under these assump-
tions we can describe the expected population density
u(x, t) at point x and time ¢ in terms of the sort of
infinitesimal generator 4 described in (2.8)-(2.10) as
follows:

ou 0%u
E':Dl 5;5-1—'814

for —Il<x<0,

2L<x<2L+1, t>0
(2.11)

Ou 0%u
E=D2$+ ru

for O0<x<2L, t>0
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0
(-0, 2| —ap, 2,
ax x==0— ax x=0-+
3 3 (2.12)
u u
aDza x == 2L — - (1 _a) Dl EC x == 2L 4
2 2
<D1 —a——u5+su> = <D25—L;+ ru> s
O0x x=0— Ox x=0+
62. o (2.13)
U u
(ooggem) , =(oigdes)| .
u(—Lty=u(2L+1,t)=0. (2.14)

As always, there would be some specified initial density
u(x, 0) =ug(x) for I — <x<2L+ I We have intention-
ally built a high degree of symmetry into the model
(2.11)-(2.14) to simplify the analysis, but it would
certainly be possible to examine less symmetric arrange-
ments of favorable and unfavorable habitats as in Cantrell
and Cosner (1991a).

Reducing the General Model to an Average
Growth Rate

The full time-dependent model (2.11)-(2.14) would be
quite complicated to analyze completely. However, we
can assess the effect of the various parameters in the
model on the suitability of the overall environment by
determining the average rate of population growth or
decline predicted by the model. The full model can be
written in condensed form as in (2.3), where A4 is the
infinitesimal generator of the dispersal and growth
process. If we can find a positive function ¢(x) in the
domain of 4 such that

Ad= o (2.15)

for a constant ¢ then (2.3) will have solutions u = ¢(x) ¢
which either grow or decline exponentially with rate o.
Equation (2.15) is a type of eigenvalue problem. Eigen-
value problems such as (2.15) have proven useful in
many studies of spatial effects via diffusion models; see,
for example, Cantrell and Cosner (1989, 1991a, b, 1993,
1994); Cosner (1990), Murray and Sperb (1983), and
Pacala and Roughgarden (1982). A fortunate simplifica-
tion of the matching condition (2.13) occurs for the
eigenvalue problem (2.15). In that problem the equations
in (2.11) give
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2

DI%—HQS:U«;S for —I<x<0

and 2L<x<2L+1 (2.16)

2

ng;g-l—rqﬁ:mﬁ for 0<x<?2L.

Using (2.16) the matching condition (2.13) becomes
equivalent to matching o¢(x) across the interfaces at
x=0and x=2L, ie.,
pO0—)=¢(0+), ¢2L—)=¢2L+). (2.17)
(In the case o =0 notice that A¢ =0 so if v=e"¢ then
Ov/0t =v= (A4 + I) v, where [ is the identity operator. But
then the function ¢ turns out to be an eigenfunction for
A+ I'since (4 + I) ¢ = ¢. Thus, ¢ is also an eigenfunction
for a semi-group generator with o =1 %0 so (2.17) must
hold.) An additional simplification in the analysis can
be made by noting that the problem is completely sym-
metric around x =L, so that the solution ¢(x) can be
constructed by solving the problem on the interval
=2 =T with condition ddldv—0 at x—1T and then
reflecting ¢(x) about x=_L to obtain the solution for
L < x <2L+1 The resulting simplified problem can be

- stated as

2

D1%+S¢=a¢ for —I<x<0,
] (2.18)
ngxii-lrrgﬁ:mﬁ for 0<x<L
- b r\_
¢(=N=0, —-(L)=0 (2.19)
“D2%(0+)=(1—a) DI%(O-) (2.20)
$(0+)=¢(0—). (2.21)

Let o, be the value of ¢ such that there exists ¢(x)>0
satisfying (2.18)-(2.21); that is, let o, be the principal
eigenvalue for the problem. We will assume s < r and will
allow s < 0 so that s may actually represent a death rate.
In general o may depend on r and s if individuals can
sense and respond to environmental quality. The positive
function ¢(x) associated with o, can be viewed as a stable
spatial distribution of the population, in analogy with
the stable age distribution for a matrix model of an age-
structured population. Thus, the population density will
behave like Ce®’¢(x) after transient effects due to the
initial population distribution have become negligible.
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3. THE BASIC ANALYSIS OF
THE MODEL

Graphical Determination of the
Average Growth Rate

In this section we shall describe how the eigenvalue oy
describing the average growth rate of the population
modeled in (2.18)-(2.21) can be analyzed for its depen-
dence on the intrinsic local growth rates r and s in the
intervals of favorable and less favorable or unfavorable
habitat, the respective lengths L and / of those intervals,
and the edge permeability « at the interface between the

intervals. The essential idea is that we can solve Eq.

(2.18) describing ¢ on (1, 0) and (0, L) subject to the
boundary conditions (2.19) and then use the matching
conditions in (2.20) and (2.21) to obtain an equation that
implicitly determines a, in terms of the other parameters.
The implicit relation determining ¢, can be analyzed
graphically to determine the qualitative effects of changes
in parameter values or numerically to obtain quantitative
information.

[ TNV USRI PN P A S L R T T S 4 L e
UL ALOL VUDWL YQRLIVLL GUVLL U () 40 LIAUL IV UV N W S 2 v

must have g, <r. This is because the local growth rate s
is assumed to be less than r and there is some loss of
population at the lethal boundary x = —I (If x =1 then
the favorable interval (0, L) is a closed environment since
individuals never enter the interval (—/, 0) and hence
oo =* in that case.) In solving (2.18) for 0 <x <L we
may thus assume that r — o> 0 so that to satisfy (2.18)
and (2.19) with ¢(x) >0 on (0, L) we must have

¢(x) = p cos(\/r—o/D; (x— L))

for 0<x<L (3.1

with #>0. From (3.1) we see that we must have o>
r—n?D,/4L? to prevent ¢(x) from becoming negative on
(0, L). Thus, independently of s, J, or a, we have r —n?D,/
4I% <gy<r.

The relation between o, and s is less obvious. In par-
ticular it is not clear whether oy <s, go=s, or o> 5. (It
will turn out that all three cases can occur.) Allowing
each of the possibilities we can solve (2.18) and (2.19) on
(—1, 0) to obtain

Csinh( /(o —s)/D; (x+1)) if o>

d(x) =< Clx+1) if o=s  (32)

Csin(y/(s—a)/D; (x+1)) if o<s

for —Il<x<0.
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Again we need C> 0 to have ¢(x) > 0.

To determine o, we compute (dg/dx)(0 + ) and ¢(0 +)
and then apply some algebra to (2.20) and (2.21) to
deduce an implicit equation for ¢y, namely

<_(_1__;_;%D_1,> flo,r, L, D;)=g(a, 5,1, D), (33)
where
flo,r, L, D,)= cmm = G
and

tan( /s —a/D;) ]
V(s—0a)/D,
glo, 85,1, D))=<1

tanh (,/a;s/Dl ) § o>
Vo —s)/D, (35)

To make the matching conditions feasible, so that there
is a meaningful solution oy to (3.3), we must have
(d¢p/dx)(0 —)>0. (Recall that we must have r>g,, SO
that for o =0, we have D,(d*¢/dx*)=(c—r) ¢ <0 on
(0, L); also, (dg/dx)(L) = 0. Thus, if dp(0 — )/dx < 0 then
we must have (d¢/dx)(0 + ) < 0 which implies (dg/dx)(L)
<0, in violation of the condition (d¢/dx)(L)=0.) The
requirement that {d¢/dx)(0—)>0 imposes the restric-
tion that o >s—n*D, /4% In the limiting case as L — 0
we have dgp(0 + )/dx — 0 so that 6= s — 72D, /4> would
be the value attained if L = 0. (This is exactly the eigen-
value for a model with growth rate s on an interval of
length 2/ with a lethal boundary.) To determine o, we
solve (3.3) for o with f defined for r —n?D,/4L* <o <7
and g defined for s —n%D, /4 <o. It turns out that on
those intervals f'is increasing in ¢ with a vertical asymp-
tote at o=r and f=0 at o=r—n’D,/4L? and g is
continuous and decreasing in ¢ with a vertical asymptote
at s —n*D, /4%, The graphs are shown in Fig. 3.1. It is
clear that df/0c is continuous on the domain of . It turns
out that 0g/0o is continuous as well.

We shall explore the qualitative dependence of o, on
the parameters by noting that since [(1 —a) Dy/aD,] f
is increasing in o but g is decreasing in o, any change that
raises the graph of [(1—a) D,/aD,] f but leaves the
graph of g fixed will lower o, and any change that leaves
[(1 —a)D,/aD,] ffixed but lowers g will lower o, (see
Fig. 3.1). Conversely, lowering [(1 —a)D,/aD,] f or

if o<s

if o=s
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raising g will raise o,. Since the expression [(1 —«) D,/
oD, f— gismonotonein o and has a continuous derivative
with respect to o the value of o is unique and can readily
be computed numerically from (3.3) via Newton’s
method for any fixed set of parameters. (Notice that since
I=g{s,s,1, D;) the intersection of g(o,s, [, D;) and
[(1—a)D,/aD,] flo,r, L, D,) must occur for g, <s if
I<[(1=a)Dy/aD,] f(s,v,L,D,) and for gy>s if
I>[(1—=a)D,/aD,] f(s,r,L,D,]; see Fig. 3.1. This
observation provides a simple way of deciding which
formula from (3.5) should be used for g{o, 5, I, D,).)

A number of biological conclusions about the effects of
various parameters on the average population growth
rate g, can be drawn immediately from the graphs in
Fig. 3.1. One immediate conclusion is that oy is increas-
ing with respect to L. This follows from the observation
that increasing L decreases the value of [ (1 —a) D, /oD, ]
flo,r, L, D;) and thus lowers that graph but does not
affect g(o, s, [, D). Similarly obvious conclusions are
that if all other factors including « are fixed, then increas-
ing r or s will increase ¢y. This assumes that the degree
of preference a for the favorable habitat does not depend
on the degree of variability there or in the less favorable
surroundings. If the population can sense and respond to
environmental quality that complicates matters; we shall
address that point later. Furthermore, some caution is
required in applying these last conclusions, because the
model treats only a single species. For competing species
increases in the growth rates of both competitors in a
buffer zone may shift the balance of competition and
cause the extinction of one or the other in the refuge; see
Cantrell and Cosner (1993). Another fairly obvious
conclusion is that since increasing / (the size of the buffer
zone) increases g(a, s, [, D) it thus increases o,. It turns
out that there are strict limits to the beneficial effects of
a buffer zone, however, and we shall return to treat that
point in detail in the next subsection.

A specific goal of this paper is to consider the effects of
edge permeability on the predictions of diffusion models.
A conclusion can be drawn immediately from (3.3) via
Fig. 3.1, namely that if all other factors remain fixed then
increasing «, the tendency to remain in the favorable patch
or refuge, will decrease [(1 —a)D,/aD,] flo,r, L, D,)
and thus will increase o,. The conclusion is not surprising,
but it must be used with care. This is because o, represents
the average population growth rate. Clearly it is beneficial,
even necessary for survival, to have oy > 0. On the other
hand, achieving a given positive value for the growth rate
of a population restricted to a small region might be less
desirable from the viewpoint of conservation than
achieving a slightly smaller but still solidly positive
growth rate for a population distributed over a much



196

g(o)

[(1-a)D,/aD,]f(o)

\/
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s-t’D /41° r-’D, /AL

{ >

o, I O

FIG. 3.1. Thegraphs of [(1 —a) D, /aD,] fla, 1, L, D,)and g(a, 5, I, D,). We always have r > s, but the relationships between r — (22D, /4L*) and
s, r—(m*D,/4L?) and s—(n*D,/4%), and 5 and o, depend on the parameters. Observe that if the graph of g is shifted upward or that of
[(1 —a)D;/aD,] f is shifted downward then the point of intersection moves to the right; ie., o, increases. Similarly, if g decreases or
[(1 —a) D, /aD,] fincreases, the intersection moves to the left and g, decreases.

larger region. This sort of point is addressed in the
source-sink dynamics of Pulliam (1988). At the level of
our linear growth models the utility of increasing a will
depend on the size of o, and the sensitivity of o to . The
case where increasing o would appear to be most beneficial
would be when 6, <0 for o= 1 since [(1 —a) D, /aD,] f
— 0 aso-»1exceptat o=r, sothato, —rasa— 1. The
point is that in such a situation there would be a negative
average growth rate (i.e., a net death rate) if the popula-
tion could disperse freely out of the refuge but a positive
growth rate if the permeability of the boundary were
decreased sufficiently.

Boundary Conditions and Bounds on Benefits
from Big Buffers

To understand what happens as the size / of the buffer
zone or unfavorable region surrounding the refuge or
habitat patch becomes very large, we observe that the
function g{a, s, I, D,) used in (3.3) to determine o, has
the properties that for o =s, g(s, 5, , D) =/ and that as
I — oo the asymptote at s — n?D, /4> moves toward s. As
[ - oo the value of ¢, as determined by the intersection
point of g and [(1 —a) D,/aD,] f as in Fig. 3.1 must

eventually lie to the right of o =s. This follows because
g=1I when o=s but [(1—a)D,/aD,] f at =5 does
not depend on J, so as /is increased eventually g > [ (1 — &)
D,/aD,] f at o=s. (See Fig. 3.2.) For o>s we have
g(as S, l: Dl) <V DI/(G"-S) and l‘nnl-»eo g(a', S, la Dl) =

D,/(c—s). Since g(o,s 1, D) is increasing with
respect to I, it follows that as [ — o0, oy — o* >, where
o* is determined by

Q=02 fio,r, 1, D) =/Bife—9).  (36)

Furthermore, o,<o* for any finite J, and since
flo,r,L,D,)~ 00 as o—r, we have og*<r. (See
Fig. 3.2.) Since o, < o* <, the effective growth rate of a
population with « <1 will always be less than what it
would be in a completely favorable region. Furthermore,
since o, increases monotonically toward o* as [ — oo, we
must have the sensitivity do,/0] — 0 as / — oo. Thus there
is ultimately a diminishing benefit of increasing the size of
buffer zones, and the size of the buffer zone can never com-
pletely compensate for its lower quality. In Ludwig et al.
(1979) a situation corresponding to /= oo was analyzed
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[(1"0'*)]) 1/ aDz]f(O)

S

>0

o, O I
FIG. 3.2. This figure shows the graphs of [(1 —a) Dy/aD,] f(o, r, L, D,) and g(w, s, I, D,) as solid lines and shows the graph of

1/D1/(0"‘S = lim g(G', 5, 11 Dl)
100

as a broken line. As /1 00, g5 To* <r. It follows that there is a limit to the beneficial effects of a buffer zone, even if it can be made arbitrarily large.

by using matching conditions (2.20) and (2.21) with o= 1
to set up boundary conditions at x =0, x=2L. At x=0
the conditions took the form :

:d—)‘-:f(o+)+c¢(o+)=o. (3.7)

These are a classical type of boundary conditions known
as Robin or third-kind boundary conditions; see Strauss
(1992). In the cases treated by Ludwig et al. (1979) the
population density was assumed to be at a static equi-
librium, which in our scenario would correspond to
oo =0. In that case our modeling approach yields exactly
the same boundary conditions as those derived in
Ludwig et al. (1979) for /= oo provided that a = 1. For
a # 1 and a static population we obtain a slightly different
Robin condition with ¢ replaced by ¢(1 — a)/a. Thus, our
boundary conditions are equivalent to a type of Robin

boundary condition in the case of static populations and
I= o0, which is the only case where the derivation of the
Robin conditions in Ludwig et al. (1979) makes sense.

4. EFFECTS OF BUFFER ZONES

Determining Growth Rates via Buffer Zone
Design

In the context of refuge design for conservation it is of
interest to determine whether it is useful to create buffer
zones around a refuge and what size and quality of buffer
zone is needed to achieve a specified goal. In the present
article we consider only the average rate of population
growth predicted by a density-independent (i.e., linear)
single-species model, and ask what sort of buffer zone is
needed to achieve a given growth rate. This approach
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must be used with caution in any practical situation
because density-dependent interactions can produce
qualitatively different effects. However, even with density
dependence, we must have a positive average growth rate
g,y to avoid extinction. More generally we may wish to
achieve an average growth rate which is some given frac-
tion y of the local growth rate » which would be attained
in the optimal habitat inside the refuge. The reason for
wanting o, = yr for some y > 0 rather than simply want-
ing o4 > 0 is to allow for factors such as demographic and
environmental stochasticity.

We shall assume that the size / and quality s of the
buffer zone can be manipulated more easily than the
remaining parameters and ask what choices of /and s are
required to achieve an average growth rate that is equal
to some specified fraction of the optimal growth rate
¥, i.e., oo =yr for some y with 0 <y < 1. The question is
only relevant if yr>r —n?D,/4L* because the average
growth rate o, is always larger than r—n2D,/4L>
Hence, we shall suppose that L is fixed and that yr>
r—mn?D, /AL

The first observation is that if the size / of the buffer
zone is allowed to increase but all other parameters are
fixed then there is a number o* < r such that the growth
rate o, satisfies oo <o* for any finite / and oy — a* as
[ co. The quantity o* is defined by (3.6); see Fig. 3.2.
Thus, it is possible to achieve g, = yr by taking / to be suf-
ficiently large if and only if ¢* > pr. Since o* > s (see
Fig. 3.2) we can always achieve oy = yr by choosing / to
be large enough provided that s > yr. It follows that the
smallest value s, of s for which ¢* > yr must satisfy
s, <yr. We can determine s, by substituting o = yr into
(3.6) and using (3.4). We have

)

<yr. (4.1)

(1=7) 7D, L)]

If s <s, as given in (4.1) then it is not possible to achieve
an average growth rate oy = pr no matter how large the
buffer zone is made. If 5 > s, then we can achieve gy = yr
by taking / to be sufficiently large. To determine how
large [ must be we substitute ¢ = yr into (3.3) and solve
for L If s < yr we have

l=

1— D —
tanh -1 {( =L yr o

D, Jai=nr
ﬁ

7

~

x cot L (4.2)

1
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if § = yr then
1—a Dy (1— )r
[= [ R [ 43
o /D ./(l—y)r [ } (*3)
and if s > yr

j= /D1 tan_l{aw) D, _fs—yr
SSs—yr a D, J(1—yp)r

xcot[ /Q——;——})——r—L}}. | (4.4)

Note that if s decreases toward the value s, shown in {(4.1)
the appropriate formula for /is (4.2) and since the expres-
sion inside the tanh ~! approaches 1 as s — s, we have
I — co0. On the other hand if s > yr so that (4.4) holds we
have I<=n \/E /2 /s —yr. This is not surprising since if
s> yr we could take L = 0 and still achieve a growth rate
of o= yr on the interval (—/ [) for [=n \/1—)_1_/2 S —yr.
If s=r, D, =D,, and a« =1 then the model describes a
single uniform region of length 2/+ 2L. In that case (4.4)
reduces to yr=r—n“D,/4(L -+ [)“, which 18 exactly the
growth rate expected on a uniformly favorable habitat of
length 2/+ 2L with local growth rate r, diffusion rate D,,
and a lethal boundary.

Note that if the other parameters are fixed the value of
I necessary to sustain a given growth rate is decreasing in
«, and that as a— 1, /— 0. However, this conclusion
should be used with some caution since g > rasa— 1
independently of the size 2L of the refuge in this modeling
approach. This assumes that the refuge is effectively large
enough to sustain an optimal growth rate if it were com-
pletely enclosed. Generally this means that the refuge
would need to be large enough that demographic
stochasticity is not a major problem.

Sensitivity of growth Rates to Refuge and
Buffer Size

It is of interest from the viewpoint of refuge design to
ask how changes in the quantities L and / describing the
size of a refuge and buffer zone respectively will affect the
average growth rate o,. The general behavior of o, as a
function of / and L is shown in Fig. 4.1. Generally, the
increase in g, relative to a given increase in L or / appears
to be largest for small values of L and / and to decrease
as L and / become larger. We can make this more precise
by examining the partial derivatives doy/0L and 0o, /0L
These measure the sensitivity of g, to changes in L and
I, respectively. To determine da,/0L and 0a,/0! we can
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a(l)

by |O ofL)

FIG. 4.1. These graphs show o, as a function of / and of L, respectively, with the other parameters held fixed. The graphs show that the effect
of increasing either / or L becomes smaller as the value of the variable becomes larger. However, the effect of increasing / becomes small (i.e., the graph
of oy, as a function of / becomes flat) much sooner than does the effect of increasing L. This supports the view that most of the beneficial effects of
a buffer zone are already realized with a small buffer. The benefits of increasing the size of the reserve continue to be significant even if the reserv
is fairly large. :
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differentiate (3.3) implicitly and solve. For 0o, /0L we
obtain

doy ____—[(1=w)ja] Dy(@/}oL) @5)
0L = [(1=@)/a] Dy(3f60) — D,(38/0%) loms,

where f and g are defined by (3.4) and (3.5) and o, is
determined by (3.3). By explicitly evaluating the expres-
sion in (4.5) we can produce a somewhat complicated
formula for 0o, /0L; see the Appendix. Here we shall be
concerned primarily with examining the behavior of
004/0L and 0o, /0! as L or [ becomes large or small.

As [— oo for L fixed it turns out that do, /0l — 0 but
doo /0L converges to a positive value which depends on
the remaining parameters in a somewhat complicated
way (see the Appendix). As L — oo with / fixed, 0oy /0!
-+ 0 and dg, /0L — 0 but

. (9ao/0l) oD, o 2 otz
L.l—blmoo(aa'o/aL)~(1_m)Dl sech®[(r —s)'? D2 1]

Clanmm mmnle a0 L N an v v wn i FAllasen frnenn tlaa nlhavrs

LRIV WAL SV T A ML WM ¢ WA AN ANSEANS VYA AL SRAAL VAR SeASNS ¥

observations that as the buffer zone becomes large the
benefits of further increasing the size of the buffer
diminish and become negligible relative to the benefits of
increasing the size of the refuge.

For intermediate sizes of / and L we have

(0o4/01) < aD,
(904/0L) ~ (1 —a) Dy

as long as s <oy. In any case, independent of whether
8> 0g O § < 0y, it turns out that we have

. (9a,/01) aD,
o Goo/dL)  (1—w) D, (46)
(See the Appendix.) The conclusion here is that when /is
small it may be more advantageous in some cases to
increase / than to increase L, but only if oD, > (1 —a) D;.
The requirement oD, > (1 —a) D, implies that either the
population prefers to remain inside the refuge or disper-
ses more slowly in the buffer than in the refuge or both.
Hence, for a small buffer or a buffer of relatively low
quality (s <r—n*D,/4L*) to be worthwhile, it must act
as a partial barrier to dispersal out of the refuge.

If s>r—n2D,/AL? (ie., the refuge is small or the
buffer is of high quality) and / is small then s > & so the
formula for g and hence for 0o, /0! and 0o, /0L would be
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different than when s < g,. In fact we always have s > g,
as L — 0. We have

G (1 —oc>

(22D, JA2)
20 (90,/0L) ~\ «

[r—s+(x®D,/4")]

(4.7)

Since o > 1 and r > s, it follows from (4.7) that (9a,/3!)/
(06o/0L) <1 for L small. The implication is that when
the refuge is small it is always more beneficial to increase
the size of the refuge than to increase the size of the buffer.

The general conclusion about refuge design is that the
only situation in which increasing the size of the buffer is
highly beneficial is if the refuge is at least moderately
large, the buffer is relatively small, and the buffer acts as
an impediment to dispersal of the population. An impor-
tant way that the buffer can impede dispersal is by being
unattractive to the population, ie., having a relatively
large value of a. If the population responds to environ-
mental quality then large values of « may be associated
with buffers of low quality (i.e., small s), so there may be
a trade-off between having a relatively high growth rate
(or relatively low death rate) in the buffer and having the
buffer act as a dispersal barrier. We shall explore that
point in the next section.

5. POPULATIONS THAT DISPERSE IN
RESPONSE TO HABITAT QUALITY

In this section we consider how the average population
growth rate is affected by the sensitivity of the population
to the difference in habitat quality across interfaces
between favorable and unfavorable habitats. In this
scenario we suppose that the percentage o of individuals
which return to the favorable region when they reach the
boundary depends on the relative quality of the favorable
and unfavorable regions. In terms of the local population
growth rates » and s on the favorable and unfavorable
regions, respectively, it is reasonable to assume that if o
depends on r and s then a=a(r, s) with a(r, r)=1 (so
there is no preference if the two regions have the same
quality of habitat) and with «(r, s) increasing as r—s
increases (so that « increases as the difference in habitat
quality increases.)

Models for Habitat-Sensitive Behavior at an
Interface

A simple way to model how a might depend on r and
sis to take a(r, 5) = ay(r — 5), where a(0) = £ and ao(x) is
a nondecreasing function. Since 1<« <1 we must have
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og(x) — &<1 as x— o0, 50 afr, s) > & as r — 5 — oo0. The
interpretation of & is that 1—& is the percentage of
individuals that are willing to cross from a region of more
favorable habitat into a region of less favorable habitat
no matter how much difference there is in habitat quality.
Thus, if & < 1 there will always be some individuals cross-
ing into the less favorable region, while if d=1 the
percentage that cross into the less favorable region will
tend to zero as the habitat quality becomes sufficiently
bad, i.e., as the local growth rate s —» — o0. Whether x < 1
or =1 may have significance for the behavior of the
average growth rate o, as s — — o0, depending on the
functional form of «4(x). If we assume any particular
functional form for «, we can introduce another
parameter J > 0 as a scale factor on the difference r — s of
local growth rates so that o{r, s)=o(d(r —s)). This
parameter scales the intensity of response to any given
value of r —s. If ay(x) is an increasing function then for
any r — s > 0 an increase in 0 will increase o, s0 increasing
0 will increase . Some examples of possible functions a,
include

og(x) = ae*/[ (2& — 1) + ] (5.1)
and

og{x) = (1 + xP)/(2d + xF) forsome p>0. (52)

The significance of the forms (5.1) and (5.2) is that
if ap has form (5.1) then «,(dx)— & exponentially as
X — 00 since & — ay(0x) = &(2& — 1)/[ (2& — 1) +€°*], and
similarly oo(dx) — & with order x* as x — oo if a, has
the form (5.2). We shall see that when & =1, the rate at
which ag(dx) approaches & determines what happens as
the local growth rate s in the less favorable region
approaches — 0.

Effects of Habitat-Sensitive Behavior on the
Average Growth Rate

We now consider the effect of sensitivity to habitat
quality on the behavior of the average growth rate o, as
the quality of habitat in the more favorable or less
favorable region (measured by local growth rates r and s,
respectively) is varied. 4 specific issue that we address is
the extent to which sensitivity to differences in habitat
quality can compensate for decreases in the habitat quality
in the less favorable region or buffer zone. To analyze the
situation where « depends on r — s, recall that the average
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growth rate o, is determined by (3.3), which we
reproduce here:

U__E)&f(a, 1L, D;)=g(a,s,1,Dy).  (53)

a.Dz

Recall that increasing the expression on the left of (5.3) or
decreasing the expression on the right decreases oy, and
vice versa. (See Fig. 3.1.) The function f'is decreasing in
r and the function g is increasing in s, so if « is fixed then
o, increases if either » or s is increased. If o = oo(5(r —5))
then holding s fixed and increasing r causes « to increase
so that (1 — o)/ = (1/a) — 1 decreases; also, f(o, r, L, D,)
decreases, so the left side of (5.3) decreases and o,
increases. Thus, increasing r is even more beneficial (and
decreasing r more detrimental) than if « were fixed,
because the way that « changes with r augments the way
that f(o, r, L, D,) changes with r. On the other hand, if
we rewrite (5.3) as

oD,

flo,r, L, D,) ~d—a D,

glo,s,1,Dy) (54)

and a = ay(d(r —s)) is decreasing in s, then since a/(1 — o)
is an increasing function of a, the expression oo(5(r — 5))/
[1—oo(8(r —s))] is decreasing in s while g(a, s, [, D{) is
increasing in s. Whether the product is increasing or
decreasing with respect to s will depend on the form of «,
and the various parameters in the problem. The reason
why the average growth rate might decrease with increas-
ing s or increase with decreasing s is that the aversion of
the population to unfavorable habitat might compensate
for the deleterious effects of declining habitat quality in the
less favorable region. It turns out that this effect can
actually occur under certain conditions. As an example,
suppose that oy has the form (5.1) with &=1. Then
/(1 —a) = e’ ) and (5.4) becomes

f(U', r, Ls -DZ) = [ed(r“S)DZ/Dl] g(a‘, S, l) Dl) (55)

For fixed values of the parameters the expressions in
(5.5) have the same dependence on o as in (3.3). It follows
that r — 2D, /4L* <o, <r for any s. If 6 > s then using
(3.5) we see that g(o, s, , D,) is bounded and has the
form

g(a', S, l, Dl) = (G—S)—I/Z Di/Z tanh [(a_s)l/z Di—1/zl]

(for s< o). (5.6)
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Suppose that s <r—n2D,/4L* so that s<o and (5.6)
holds. Computing the partial derivative with respect to s
of the expression on the right in (5.5) yields

0
s ([’~*ID,/D,] g)

= (D,/D,) e’ [ —5g+g—ﬂ. (5.7)
Thus, by (5.7), if § is large enough then —Jg + (0g/ds) <0
so the expression on the right in (5.6) will be decreasing
as s increases. In other words, if the strength of aversion
to less favorable habitats (as measured by J) is suffi-
ciently strong, a decrease in the quality of the less
favorable habitat might actually increase the average
population growth rate, The rate at which the strength of
aversion increases relative to decreases in habitat quality
will depend on the parameters  and & and the functional
form of «,. We next examine the behavior of the average
growth rate ¢, as s — — 0.

To understand how o, behaves when a = ay(d(r —5))
and s — — oo we return to (5.4). Recall that increasing
the right side of (5.4) increases g,. If @< 1 then since
o< & independent of r, s, and & it follows that for any
given s we have oy < G, Where @, is the value determined by

@D,

f(a, r, L, Dz) =ml-

g(O', S, l: DI) (58)

If s — — oo then eventually s < r — 2D, /4L* <G, so that
g is given by (5.6) and thus g(o, 5, , D,) —»0ass— —o0
within the range of values of ¢ where /> 0. It follows that
o, converges to the point where f(o,r, L, D;)=0,
namely o, =r—n?/4L% Since r—n’D,/4L*<0,<0,
for any finite s we have o, —» r — %D, /4L? as s — — c0.
Since f(o, r, L, D,) is defined and is nonnegative only for
r—n’D,/AL><a<r, the value r—n?D,/4L* is the
lowest possible for the average growth rate o, no matter
what the specific parameters occurring in [aD,/
(1—oa) D,] g(a, s, I, D;) may be. The conclusion is that
if & < 1 then the growth rate oy has the same behavior as
s —o0 as it would if « were fixed. If =1 then the
behavior of g as s » — co depends on the details of how
rapidly (7, s) = 1 as r — s — c0; that is, it depends on the
form of «y. For some choices of oy, 6y — r —n*D, /4L as
§— — o0 but for others o4 — r as s » — c0. If the expres-
sion on the right in (5.4) approaches zero as s — — oo for
o between r — 72D, /4L? and r then oo — r— 2D, /4L?
since r—n?D,/4L? is the value of ¢ for which f(o,r,
L, D,)=0. On the other hand if the right side of (5.4)
approaches infinity as s — — oo then gy > r as s — — o0
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since r is the value of o for which f{o, r, L, D,) becomes
infinite. Suppose that a has the form (5.2) with &= 1, so
that a(r, s)=(1 4+ (6(r —5))?)/[2+ (6(r—5))?]. Then
of(1 —o)=[14(d(r—s))?]. As s> —co we must have
s<r—m*D,/4L? eventually and so g(a, s, [, D,) will be
given by (5.6) so that

aD
2 g(a‘, S, Z: Dl)

(1—a) D,
=D, D Y?[1+45%(r—s5)?1(a —s) "2
x tanh [ (o —s)"2 D121]. (5.9)

If ¢ and the remaining parameters are fixed then
tanh[ (6 —s)"# D721 —»1 as s— —co while [1+

6P(r—s)?] (6—s)"2 -0 if p<i but [1462(r—s)?]
(6—5) "2 0 if p>1. Thus, if p<i then oy —

r—mn?D,/4L? as s— —oo but if p>3 then o, —r as
§— — o0, The parameter p describes the rate at which
oo(x) -» 1 as x — oo, with a larger value of p correspond-
ing to a more rapid approach to the limiting value. (If a,
has the form (5.1) with & =1 then o{x) = 1 even more
rapidly as x — oo so again g, — r as s = — 00.) The inter-
pretation is that sometimes making the habitat quality in
the less favorable region as bad as possible can actually
have a beneficial effect on the average growth rate of the
population in the overall environment if the degree of
aversion to the unfavorable habitat increases rapidly
enough as habitat quality decreases. Specifically, this will
be the case if 1 —a(x)~» 0 exponentially or with order
x~?, p>1%, as x — co. The key factor is again how effec-
tive a barrier the unfavorable region or buffer zone is to
the dispersal of the population. The idea that buffer zones
of lower quality might sometimes be more effective in
isolating a refuge from its exterior was suggested by
Janzen (1983, 1986) and explored in the context of com-
petition between two species in Cantrell and Cosner
(1993). The most important implication of those works
and the above analysis is that the quality of habitat in a
buffer zone is not the only factor in determining the
benefits or absence thereof to be expected from the buffer
zone. The effects of the buffer zone on dispersal and com-
petition (and probably on other things as well) may also be
relevant to the effectiveness of a buffer zone.

6. DISCUSSIONS AND CONCLUSIONS

Conclusions about Mathematical Models

Our basic conclusion about modeling is that it is
feasible to incorporate the behavior of individuals at a
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patch boundary or an interface between habitat types
into diffusion models for population dynamics with dis-
persal. To do so requires only one additional parameter
o which measures the extent to which individuals are
willing to cross the patch boundary or interface. The
remaining parameters in our models are diffusion rates
and local population growth rates. The parameters
related to dispersal could be measured by direct observa-
tion of individuals and/or mark and recapture experiments.
(Diffusion coefficients are proportional to the mean
square distance moved by an individual in unit time, with
the constant of proportionality depending on the number
of space dimensions.) Local population growth rates
correspond to the parameter r in the logistic equation.
They can be estimated from data on reproductive and
mortality rates, for example, via construction and evalu-
ation of a Leslie matrix. Diffusion and population growth
rates are calculated from demographic data in Andow et
al. (1990); see also Skellam (1951), Okubo et al. (1989),
and Okubo (1980). Empirical studies on rates of emigra-
tion from (or dispersal between) habitat patches and
their surrounding regions include Goszezynski (1979a, b),
Wegner and Merriam (1979), Yahner (1983), Bach
(1984), and Kareiva (1985). Once the parameters in our
models are specified, the analysis can be performed in
more or less the same manner as for an ordinary diffusion
model with discontinuities in growth or diffusion rates.
The point is that our models are feasible in the sense that
their calibration and analysis are within the range of
existing experimental and analytic techniques.

Conclusions about Ecology and Reserve Design

Some of the conclusions from our models are intuitively
obvious. The growth rate o, will always increase at least
to some extent with increases in the size of either the
refuge or the buffer zone or with an increase in the
habitat quality inside the refuge. The growth rate o, will
also increase with an increase in the preference of the
population to remain in the refuge. However, this obser-
vation should be used with caution in refuge design
because it does not take into account the total popula-
tion. It may be that in some situations dispersal into less
favorable regions may decrease the population growth
rate but increase the total population; see, for example,
the discussion of source-sink dynamics in Pulliam
(1988). If the preference of the population to remain in
the refuge does not depend on the habitat quality in the
buffer zone then increasing the habitat quality in the
buffer zone will increase the growth rate. However, if the
preference of the population to remain in the refuge
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depends on the habitat quality in the buffer zone, then
increasing the habitat quality in the buffer zone may either
increase or decrease the overall population growth rate.
The situations where the growth rate varies inversely
with the habitat quality in the buffer zone are those
where the habitat in the buffer zone is of relatively low
quality and the behavior of the population at a habitat
interface is highly sensitive to habitat quality. The
mechanism in this situation is that the aversion of the
population to entering the buffer zone may increase more
rapidly than do the detrimental effects of low habitat
quality in the buffer. Thus, decreasing the habitat quality
in the buffer zone may cause it to be a more effective
barrier between the refuge and the completely inhospitable
regions outside the buffer zone. That such a phenomenon
can sometimes occur is one of the suggestions of Janzen
(1983, 1986). The situations where the growth rate
increases with habitat quality in the buffer zone are those
where the population is relatively insensitive to habitat
quality in its dispersal patterns and/or the habitat quality
in the buffer is relatively high.

Although there is always some increase in the popula-
tion growth rate corresponding to an increase in the size
of the buffer zone, the benefits of increasing the size of the
buffer zone are limited in two important ways. First, for
a refuge of any fixed size and quality and a buffer zone of
any fixed quality there is an upper limit on the possible
growth rate that can be achieved by increasing the size of
the buffer zone, and that upper bound is lower than the
growth rate which could be obtained in a sufficiently
large refuge. Second, the relative benefits of increasing
the size of the buffer to those of increasing the size of the
refuge decrease as the buffer and/or refuge get larger.
Thus, from the viewpoint of the population growth rate,
there is generally little point in making buffer zones
extremely large, unless their quality is so high that they
should really be regarded as refuges. The situation where
increasing the size of the buffer zone is most beneficial is
where the refuge and buffer zone are relatively small and
where either the preference for remaining in the refuge is
strong or the dispersal rate in the buffer zone is low.
Thus, a buffer zone of low to moderate habitat quality
is most valuable when it acts as a barrier to dispersal
out of a relatively small refuge, and this effect can
often be achieved with buffer zones of moderate size.
Again, this result is in philosophical agreement with
one of the points raised in Janzen (1983, 1986),
namely that the effectiveness of a reserve depends
substantially on the extent to which it is insulated
from the external environment and that buffer zones
can sometimes be most useful when they are good
insulators.
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In summary, our models predict that buffer zones
can be beneficial but there are limits on the extent of
those benefits; that the relative benefits of buffer zones
decrease as the size of the refuge or buffer zone increases;
and that buffer zones of low habitat quality are most
effective when they act as barriers to dispersal out of
the refuge, e.g.,, by inducing an aversion to leaving the
refuge.

APPENDIX

In this appendix we shall give some additional details
on the computations of doy/0L and g, /0! in Section 4.
Since the formula used to determine o, is different when
§ < ggthan it is when s > oy, we must consider these cases
separately. (See (3.3)-(3.5).) Recall that g, is implicitly
defined in (3.3) and implicit differentiation yields (as in
(4.5))

dog_ —[(-walD3RL) | .y
oL~ [(1—w)/a] Dy(%f/00) ~ D0gf00) |smsy
day _ D(2g/01) A2)
61~ [(1 - o)/a] Dy(0f/00) — Do(08/00) |omgy

and hence

(o) __as _ ({00l A3

(Boo/0L) (1 —a) D, \(9f/3L)

=0y

Case 1: s <o,. Note that this is the relevant case if
either / or L is large. Since by hypothesis s <r, we have
s<r—m2D,/4L? < g, for L large (see Fig. 3.1). Similarly
as [ — oo we have g — o* > s (see Fig. 3.2). When s <o,
(A.1) becomes

dog
aL

=[2[(1 —a)/x] D, (2S(.‘,2((r~--a'0)1/2 D;VZL)]

[(1 —a)/a] Dy D3*(r—a0)~* cot((r—a,) D512 L)
+ [(1 —a)/a] Dy L(r —6o) ™" csc*((r —a,)"* Dy 2L)
+D,D1{*(go—5)"* tanh (g —s)"* D 21)
—Dyl(og—s) " sech?((go—5)2 D7 21)

(A4)
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Similarly (A.2) becomes

)
al

=[2D, sech*((gq — )2 D;21)]
[(1 —OC)/OC] DID;/?-(r-—-O-O)-—Bﬂ cot((r-—ao)’/z D;UZL)
+[(1 —a)fa] Dy L(r— o‘o)-1 csc?((r— ao)t? DZ_I/ZL)

+DzDi/2(do —S)'-3/2 tanh ((o.o_s)l/z Dl_l/zl) ,
—Dzl(a'o—‘S)_l sechz((go__s)l/z Dl-l/zl)

(A.5)
and (A.3) becomes

(80,/01) oD, sech®((a—s5)"2 D 21)
(aGO/aL) - (1 - a-) Dl CSCZ((}‘ e a'o)l/:Z DZ—I/ZL) -

(A.6)

To understand the behavior of the expressions in (A.4)
and (A.5) as [— o0 or L— o0 and to compare the
numerator and denominator in (A.6) it is convenient to
use the matching condition (3.3), which becomes

cot((r—o)2 D;2L)

(r_a.)l/z
aDY?  tanh ((o—s)"? D7Y?I)
T (1—a) D~ (0 —s)17 ’ (A7)

Letting T'= tanh ((go—s)"2 D;7'21), O = (1 — )/, and
applying the appropriate trigonometric and hyperbolic
identities we may write (A4) as

999

aL

=2[0D; + QD57 r —oo)(go—5) ! T?]

{D,QL(r—ag)~" — Dyfao—s)" I}
+| +{DY2Dy(r —ao)~! (g —5)" P+ DY Dyfae—5)P} T | -
+{Dyfog—5)"1 1+ D, 0 Nag—s)~' L} T?

(A.8)

Now, by the discussion in the beginning of Section 3, we
have r — 2D, /4L? <ay,<r, so as L — co we must have
o — r. It follows that as L — co, T —> tanh((r —s) D 21).
Examining (A.8) we see that as L — co, the numerator is
bounded while the denominator approaches infinity.
Thus, we have lim; _, ,,(00,/0L) = 0. A similar analysis
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shows that lim; _, (0ad4/01) = 0. Finally, we may rewrite
(A.6) as

(0o, /01) D,(1-T%) (A9)
(000/0L)  (@D1+Q7'Dy(r—o)o—s5)"'T?)
We observe that (0oy/01)/(00y/0L) < D,/QD,=(aD,)/

((1 —o) Dy) for s <o. As L — o0, we have

(80,/01) _ aD,
Lo (800/0L) ~ (1—«) D,

sech?[ (r —s)Y? D217
(A.10)

The behavior of do,/0! and 0c,/0L as [ — oo can be
analyzed similarly using the fact that as [ — o0, gy = 0,
e (s, r) as in (3.6) (see Fig. 3.2). Since s < o* <r we have
lim,_, , T=1lim,_,  tanh ((6o—$)* D7?])=1 as the
argument of the hyperbolic tangent approaches infinity.

Thus, by (A.9),

(00,/01)
o0 (Bay/OL) (A1)
The analysis of doy/0L and 0o,/0l as [— o0 is com-
plicated slightly by the fact that the terms in the
denominator of (A.8) and the corresponding formula for
00, /0] which contain factors of / are of opposite signs.
However, those terms may be written as

Dy(oo—s) " [ tanh*((oy—s)2 D7 21) —1]
= —Dy(go—s) ! I[sech®((o,— )" D7 V?])]
which approaches zero as /- oo since g, — o* > s and
sech decays exponentially at infinity. Since T—1 as

{-» oo all the other terms in the denominator of (A.8)
have finite limits as / — oo, so

doy
I—»IEO —5—L-
=2[QD;+ Q7' Dy(r—o*)(e* —5)7"]
[ P1OQL(r—0*) 7! + DiDy(r —a*) "} (o* —5) 71
+ DY?Dy(o* —5) "2+ D, Q7 L(c* —5) 7!

In the corresponding formula for do,/d! the numerator
contains a factor of 1— T2 which approaches zero as
{ -+ oo while the denominator is the same as for o, /0L,
so we have

(A.12)

2056

In the case where s <r—n?D,/4L? the relation s<o
will be maintained as /— 0. In that situation as /— 0 we
have o, —r—n2D,/4L? so that T=tanh((c—s)?
D;'2]) -0 as I 0. Thus, if s <r —n*D,/4L* we have

0oy 7D,
i~o 8L 2L? (A13)
by (A.8); and by (4.9)
day /01 aD,
= ] Al4
158 80o/0L  (1—a) D, (A-14)
Finally we have
0oy an*D?2
=0 91  2(1—«)D,L* (A.15)

Case 2: s> oy. The analysis in Section 3 as illustrated
by Fig. 3.1 indicates that g, <s if s> r—n2D,/4L* and |
is relatively small. Thus, when / and L are both small we
must use the formula g(o,s,/, D)= (s—a)" 2 DI
tan((s —g)*? D 2]). The formulas (A.1)~(A.3) remain
valid, but the expressions in (A.4)-(A.6) will change. The
expression correspond to (A.4) is

Goy
oL

=[2[(1 —w)/e] Dy csc*((r — o) D77 L)]

[(1 —&)fa] DyDY*(r —a0) > cot((r—ao)"* D7 V2 L)
+[(1 —a)a] Dy L(r — o)~ csc¥((r —o4) 2 D52 L)
— D, D*(s — 6,) ™ tan((s — 00) ?D5 121)

+ (5~ g) "t I sec*((s — ap) 2 DT V2])

(A.16)

Similarly, corresponding to (A.5) and (A.6) we have

dog

ar
=[2D, sec’((s —oy)"" Drl/zl)]

[(1 —a)/a] Dy DY*(r — o)~ cot((r — o) D3 2 L)
+[(1 ~a)/a] Dy L(r—ao)~! csc((r—a¢) 2 D52 L)
— D, DY*(s —0y) "2 tan((s —aq) 2 DT '21)

+ (s —0o) "t Isec)((s — a) 2 D21

(A.17)
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(8oo/0l) .~ aDjsec*((s— 00)2 D712])
(aao/aL) - (1 —OC) D, CSCZ((r-— 0‘0)1/2 Dé—l/zL)-
(A.18)

The behavior of these expressions as / — 0 or L — 0 may
be analyzed as in the case s > o, by writing the various
terms as expressions in 7 =tan((s—a,)*2 D 2l).
(Again, the matching condition (3.3) must be used for
some terms.) Note that as /-0 we have T 0 and
6o — r—n>D,/4L2 1t turns out that as / — 0 the relations
(A.13)-(A.15) still hold for s > g,. As L — 0 we have for
5> 0y

0ay 2a(r—s+n’D,/AP) F(A 19)

LT (—w!
. Oa, =D,
P T T (A.20)
so that
2 o~y
i (Oao/0l) 2D4(1 — o) (A21)

e (0oo/0L)  4Po(r —s+n*D, [4P)

If «>1 then (1 —a)/e<1, and since r —s>0 we must
have the right side in (A.21) less than one in that case.
The implication of having the right side in (A.21) less
than one is that when the refuge is small it is more useful
to increase the size of the refuge than the size of the buffer
zone.
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